Grand Challenges in Cyber Physical Systems
The Next Generation Embedded Systems

Tarek Abdelzaher
Department of Computer Science
University of Illinois at Urbana Champaign

Core Embedded Systems

• Dependability
• Cost of Validation/Verification
• Real-Time Support
Trend 1: Confluence of Networking, Personal Computing and Embedded Systems

- Clusters, Farms, Grids, WWW
- Embedded Everywhere
 - Transparent
 - Context-aware
 - Mobile
 - Miniature
 - Ubiquitous
 (Smart attire, smart spaces, …)

Autonomic Computing
Privacy
Networking

Trend 2: Newly Emerging Deeply Embedded Systems
(Sensor Networks)

- Sensor Network Applications
- Precision Agriculture
- Habitat Monitoring
- Emergency Response
- Disaster Response
- Border Control

- Features
 - Ad hoc deployment
 - Massive distribution
 - Interaction with a physical environment
 - Unattended operation

- Target Tracking
- Infrastructure Protection

American Border Patrol
Trend 3: Global Integration
From Smart Dust to Global Information Grids

- Low end: ubiquitous embedded devices
 - Large-scale networked embedded systems
 - Seamless integration with a physical environment

- High end: complex systems with global integration
 - Examples: Global Information Grid, Total Ship Computing Environment

Integration and Scaling Challenges

Low End High End

Emerging Challenge 1: An Internet for Embedded Devices

Observation: Human I/O bandwidth is bounded
Eventually, traffic growth is due to embedded devices

- Present Internet
 - Connecting people
 - Interface: Human centric, query/polling based (e.g., music download, google search, ...)
 - Applications: Web, e-mail, peer-to-peer multimedia, ...

- Future Internet
 - Connecting devices
 - Interface: Device centric, notification based (e.g., mine for patterns, alert to anomalies)
 - Applications: environmental monitoring, emergency response, ...

Issues: New architecture, new protocols for embedded devices, new addressing schemes, ...
Emerging Challenge 2:
Integration at Scale

- Component integration has always been a problem
 - Scalability
 - Correctness (hidden mismatches breed bugs)
- We must now take it to the next level
 - Wide-area distributed embedded systems
 - Large-scale sensor/actuator networks
 - Billions of lines of code interacting across a network infrastructure

Emerging Challenge 3:
Distributed Middleware for the Physical World

- Distributed middleware paradigms
 - Abstract distributed communication
 - Provide location transparency
- Middleware paradigms for deeply embedded computing
 - Represent the physical world to the programmer
 - Abstract distributed interaction with the physical environment
Emerging Challenge 4:
Interdisciplinary Problems

Summary

- Trends
 - Confluence of networking, personal computing, and embedded systems
 - New technologies (e.g., sensor networks)
 - Global integration

- Challenges
 - Wide-area embedded networks
 - Integration complexity
 - Middleware for the physical world
 - Interdisciplinary research