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Social Sensing:
A Confluence of Three Trends

a

Cell-phones

Mass Dissemination Media Sensors

=2 flickr
facebook
You[TH) _

Glucose
monitor

bwibpic

6/17/2012
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3 Our Goal

= Build a software platform to support
applications of social sensing

= Approach
= Develop a s_et of _>; Pty
representative apps % $ !
= Investigate services ] Complex
common to that set o
= On the front end (phones) Rrocessing
= In the back-end (the cloud)

The UIUC Application:
Transportation Energy Efficiency

= 200 million light vehicles on the streets

= Each driven 12000 miles annually on
average

= Average MPG is 20.3 miles/gallon

= 118 Billion Gallons of Fuel per year!

= Savings of 1% = One Billion Gallons

Source: USEPA
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GreenGPS: Fuel Efficient

2 Routing

= Individuals share fuel !
consumption values on
various streets at different =
times of the day
= Models of fuel efficient H
routes are computed
= They differ from shortest
or fastest routes
= Congestion - shortest may
not be fuel efficient
= MPG lower at higher speeds
-> fastest may not be fuel
efficient
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3 Green GPS
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Challenges in Developing

2 Social Sensing Applications

= Privacy
= How to enable people to share data without
violating their privacy?
= Cleaning

= How to determine reliability of data and
sources?

= Modeling and prediction
= How to generalize from incomplete data?

3 The Privacy Challenge

= Develop perturbation that preserves privacy
of individuals
= Cannot infer individuals’ data without large error

= Reconstruction of community distribution can be
achieved within proven accuracy bounds

Intuitive Approach

= Client adds noise time-series with co-variance that largely mimics
covariance of actual data (overlap in frequency domain)
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Intuitive Approach

= Client adds noise time-series with co-variance that largely mimics
covariance of actual data (overlap in frequency domain)

= Users send their perturbed data to aggregation server

User community

Perturbed
Distriby
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Intuitive Approach

= Client adds noise time-series with co-variance that largely mimics
covariance of actual data (overlap in frequency domain)
= Users send their perturbed data to aggregation server

= Given perturbed community distribution and noise, server uses de-
convolution to reconstruct original data distribution at any point in time
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: Perturbing Speed and Location

= Clients lie about both their location and
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: Reconstruction Accuracy

= Real versus reconstructed speed
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Real community distribution of Reconstructed community distribution
speed of speed

More on Reconstruction

: Accuracy

= Real versus reconstructed speed on
Washington St., Champaign

Real community distribution of Reconstructed community distribution
speed of speed

: How Many are Speeding?

= Real versus estimated percentage of speeding
vehicles on different streets (from data of users
who “lie” about both speed and location)

Street Real % Estimated %6
Speeding Speeding

University Ave 15.6% 17.8%
Neil Street 21.4% 23.7%
Washington Street 0.5% 0.15%
Elm Street 6.9% 8.6%
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5 The Data Cleaning Challenge ‘o8 The Problem

= In social sensing applications, participants \ sensing and data fusion loop /
may not be known or vetted a priori

= Some data may be incorrect and some
sources unreliable

= How to tell good from bad sources? by e 2e on souree

Apollo: A General Fact-finding

5 Service for Human-centric Sensing 3 High-level Architecture

= Human-centric sensing applications ietworkion
. . . Assertions and
= Use potentially unreliable or unverified sources Sources T -
______ - -
= May be plagued by noisy and incorrect data, especially e Front-end

in large deployments with un-vetted participants Clusters
= Apollo:
= A “generic tool” for data cleaning and fact-finding

= Does not rely on application-specific methods for
distilling sensor data

Claim Credibility
Assessment

— ! | (Distance |, | Sensor Data
| | Metric s Front-end

Source Credibility
Assessment

= Works with a wide range of applications involving data | =
types ranging from time-series of sensor readings and -
GPS location tags to image and text 7 2

5 Fact-Finding 5 Apollo Analytic Contributions
Q B ©) [19] = Formulation of the fact-finding problem as one of
® B maximum likelihood estimation
) . = Solution using the Expectation Maximization (EM)
: : algorithm
- ® ] = Computing a bound on estimation accuracy (using
Source Assertions the Cramer Rao Bound)
Ranking Ranking
. Source
. Assertion




3 Example Applications

= Humans operate sensors: g
Geo-tagging and PictureMe

= Humans carry sensors:
Speed Mapping

= Humans are the sensors:

Event and timeline %
reconstruction from Tweets 2
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3 Evaluation

= More accurate than state of the art fact-

finders z
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Fact | Media Tweet by Veritas 6 | Hundred of thousands of | RT @sharifkouddous: Tahrir
T | Coogte: Flsass Bealiweit | RT@pooglianbis. we i anti-government _protesters | is getting packed. Ppl stream-

technology for the people in | trying 1o spread these . ing in. They are calling to-
Egypt numbers  among _ Egyp- day of departure’

tians:  +16504194796 & for My H#Egypt
4390662207294, Speak | [ 7 RT @BreakingNews: Pres-
to Tweet.  #jan25 #Tabric ruling National Democratic | ident  Hosni
Square Party resign, including | resigns as head
7| Number of protesiers Gamal Mubarack. the son | ruling party. according
Cairo's Tahir Square are re- | corresy of Hosni Mubarak. Hos- | (o stae TV - Sky News
vised to more than a million sam Badrawi, a member | hitp/bitly/fHvIRr
people

of the liberal wing of the
par the new
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RT @Al
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o #Al

stored in Cairo

Hosni | [

RT RT

Ay-
man Mohyeldin is detained

@evanchill: We can now tell

public address 18 S, i i AR by the Egyptian military. you that our Cairo cormespon-
Pl dent, @aymanM, has been
il in military custody for four
s. Please RT #1an25
T Tntemet services partally re- | FLASH: Egypt inlemet sarts L il

working in Cairo, other cities
- users

5| Bursts of heavy guniile early
aimed at  anti-government
demonstrators in Tahrir leave
at least five poeple dead and
several wounded

ceis: Wow RT

Ayman Mohyeldin is re-
Teased seven hours later.

RT @bencnn: #AJE's @Ay-
manM has been released!
#freeayman

@bencan: Witness in #Tahrir
says pro-democracy people
being shot at from rooftops.
several dead. #Egypt #lan25.

‘Wael Ghonim, a Google ex-
ecutive and political activist
arrested by the h
ties since Jan 28 is relea

RT  @bencon  Wael
@Ghonim has been re-

ori- | leased.  #Tahrir #Egypt
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3 Generalization and Modeling

= Regression modeling:
= Problem: one size does not fit all. Who says that Fords and
Toyotas have the same regression model?
= Regression model per car?
= Problem: How to use data collected by some cars to
predict fuel consumption of others?
= Challenge: Must jointly determine both (i) regression
models and (ii) their scope of applicability, to cover
the whole data space with acceptable modeling
error.

Generalization and Modeling

= Complex %eneral system models with a large
number of parameters are hard to train (need a
lot of training data) and have a high inference cost
(need a lot of inputs)
= Poor cost/quality trade-off
= Main idea: Break-up complex general models into
trees of simpler (but more specialized models)
= Model has fewer parameters
-> less run-time data collection cost
= Model may fit special case better
-> higher accuracy
- Improved cost/quality trade-off!
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Approach: Two Level Cost Prune
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3 A Generalization Hierarchy

= Goal: predict fuel consumption

= Group by make, model, or year
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3 A Generalization Hierarchy

= Goal: predict fuel consumption
= Group by make, model, or year

I
Model and modeling
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Accuracy Results

= The sampling regression cube improves prediction
accuracy significantly

Sparse sampling 30
challenge: A
regression cube
without model
reduction is worse
than a single “one-
size fits-all” model!
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3 Conclusion

= Social sensing systems are becoming ubiquitous
= Some problems become more important
= Privacy, data cleaning, quality of information, modeling,
data analytics, inference robustness, ...
= Needed:

= New theory and analytic results for social sensing data
management

= A tool set and a driving demo application to embody the
analytic results (e.g., combining data mining, information
theory, control, social modeling, ...
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Navigation,” Handbook of Energy-Aware and Green
Computing, Chapman & Hall/CRC, expected in
2011.
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